

STLD

Lecture 5

Boolean Algebra

Rajeev Pandey Department Of ECE rajeevvce2007@gmail.com

Overview

$^{\circ}$ Logic functions with 1's and 0's

- Building digital circuitry
- ° Truth tables
- $^{\circ}$ Logic symbols and waveforms
- ° Boolean algebra
- ° Properties of Boolean Algebra
 - Reducing functions
 - Transforming functions

Digital Systems

° Analysis problem:

- Determine binary outputs for each combination of inputs
- Design problem: given a task, develop a circuit that accomplishes the task
 - Many possible implementation
 - Try to develop "best" circuit based on some criterion (size, power, performance, etc.)

Toll Booth Controller

- $^\circ$ Consider the design of a toll booth controller
- ° Inputs: quarter, car sensor
- ° Outputs: gate lift signal, gate close signal

- ° If driver pitches in quarter, raise gate.
- ° When car has cleared gate, close gate.

Describing Circuit Functionality: Inverter

- ° Basic logic functions have symbols.
- ° The same functionality can be represented with truth tables.
 - Truth table completely specifies outputs for all input combinations.
- ° The above circuit is an inverter.
 - An input of 0 is inverted to a 1.
 - An input of 1 is inverted to a 0.

The AND Gate

- ° This is an AND gate.
- So, if the two inputs signals are asserted (high) the output will also be asserted.
 Otherwise, the output will be deasserted (low).

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

The OR Gate

- ° This is an OR gate.
- So, if either of the two input signals are asserted, or both of them are, the output will be asserted.

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

Describing Circuit Functionality: Waveforms

Fig. 1-5 Input-output signals for gates

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

AND Gate

- Waveforms provide another approach for representing functionality.
- ° Values are either high (logic 1) or low (logic 0).
- ° Can you create a truth table from the waveforms?

Consider three-input gates

Time

А	В	С	x = A + B + C
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Ordering Boolean Functions

- ^o How to interpret A•B+C?
 - Is it A•B ORed with C?
 - Is it A ANDed with B+C ?
- ° Order of precedence for Boolean algebra: AND before OR.
- ° Note that parentheses are needed here :

Boolean Algebra

- ° A *Boolean algebra* is defined as a closed algebraic system containing a set K or two or more elements and the two operators, . and +.
- ^o Useful for identifying and *minimizing* circuit functionality
- ° Identity elements
 - a + 0 = a
 - a.1=a
- ° 0 is the identity element for the + operation.
- ° 1 is the identity element for the . operation.

Commutativity and Associativity of the Operators

° **The** Commutative Property:

For every a and b in K,

- a + b = b + a
- a.b=b.a
- ° **The** Associative Property:

For every a, b, and c in K,

Distributivity of the Operators and Complements

° **The** Distributive Property:

For every a, b, and c in K,

- a + (b.c) = (a + b).(a + c)
- a.(b+c)=(a.b)+(a.c)
- ° The Existence of the Complement:

For every a in K there exists a unique element called a' (*complement of a*) such that,

- a + a' = 1
- a.a'=0
- ° To simplify notation, the . operator is frequently omitted. When two elements are written next to each other, the AND (.) operator is implied...
 - a + b.c = (a + b).(a + c)
 - a + bc = (a + b)(a + c)

Duality

- ° The principle of *duality* is an important concept. This says that if an expression is valid in Boolean algebra, the dual of that expression is also valid.
- ° To form the dual of an expression, replace all + operators with . operators, all . operators with + operators, all ones with zeros, and all zeros with ones.
- ° Form the dual of the expression

a + (bc) = (a + b)(a + c)

° Following the replacement rules...

a(b + c) = ab + ac

[°] Take care not to alter the location of the parentheses if they are present.

Involution

° This theorem states:

a'' = a

- $^{\circ}$ Remember that aa' = 0 and a+a'=1.
 - Therefore, a' is the complement of a and a is also the complement of a'.
 - As the complement of a' is unique, it follows that a"=a.
- ° Taking the double inverse of a value will give the initial value.

Absorption

- This theorem states: a + ab = a a(a+b) = a
- $^\circ$ To prove the first half of this theorem:
 - a + ab = a . 1 + ab
 - = a (1 + b)
 - = a (b + 1)
 - = a (1)
 - a + ab = a

DeMorgan's Theorem

- A key theorem in simplifying Boolean algebra expression is DeMorgan's Theorem. It states:
 (a + b)' = a'b'
 (ab)' = a' + b'
- Complement the expression
 a(b + z(x + a')) and simplify.

$$(a(b+z(x + a')))' = a' + (b + z(x + a'))'$$

= a' + b'(z(x + a'))'
= a' + b'(z' + (x + a')')
= a' + b'(z' + x'a'')
= a' + b'(z' + x'a)

Summary

- Basic logic functions can be made from AND, OR, and NOT (invert) functions
- ° The behavior of digital circuits can be represented with waveforms, truth tables, or symbols
- Primitive gates can be combined to form larger circuits
- Boolean algebra defines how binary variables can be combined
- Rules for associativity, commutativity, and distribution are similar to algebra
- [°] DeMorgan's rules are important.
 - Will allow us to reduce circuit sizes.